バスケットボールの競技力構造の分析

——ソウル・オリンピック’88・男子チームについて——

児玉善廣
（平成元年10月31日受付）

はじめに

競技における、スコア分析やゲーム分析の必要性及び重要性については、今更いうまでもないであろう。特にバスケットボール競技の場合、対戦チームがお互いに複雑な攻防形態をとり、また、プレイの一定のパターンを保っておらず、常に様々な変化に富んだ要素によって構成されており、競技そのものにおいては、数字上の具現化が非常に困難とされがちである。それらのアプローチとして、今までに著名なコーチの手により、様々な内容や方法による各種の分析が盛んに検討されている。しかし、理論的にはその必要性を認めてならぬ、実際の競技現場での活用となると、やや分析自体に対する信頼、あるいは、競技観についてのマネジメント化などにより分析そのものに対する価値観が低下し、十分に活用されているとはいえない。しかし、フォーマンスの成果を客観的に把握し、効果的な戦術の立案や、練習の合理化といった事に生かすためには、充分なスコア分析法を行っていくことが必要不可欠であると考えられる。特に最近では、ＶＴＲなどの映像的記録の幅広い活用が目だっているが、その中でより正しい情報による無駄のない、必要最小限の適切な分析法を追求して行くことがより高い競技力の向上、あるいは効果的指導につながることと思われる。

そこで今回の研究は、従来から若者らが行っている研究の追検の一過程に加えて、チーム・カラーという新たな側面からも検討を行い、バスケットボールの持つ競技力空間の構造性について、さらにその研究の有用性を高めることを目的としている。

方法

基礎データ：分析の対象となったデータは、1988年9月17日から30日まで行われたソウル・オリンピック男子バスケットボール競技におけ る、全試合合のサブスコア記録*1である。出場12チームの一覧を表1に、また、決勝ラウンド及びコンソレーションでの全試合結果を図1に示す（予選リーグの結果は省略）。用いられた

<table>
<thead>
<tr>
<th>表1 出場チーム一覧</th>
</tr>
</thead>
<tbody>
<tr>
<td>順位</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>第1位</td>
</tr>
<tr>
<td>第2位</td>
</tr>
<tr>
<td>第3位</td>
</tr>
<tr>
<td>第4位</td>
</tr>
<tr>
<td>第5位</td>
</tr>
<tr>
<td>第6位</td>
</tr>
<tr>
<td>第7位</td>
</tr>
<tr>
<td>第8位</td>
</tr>
<tr>
<td>第9位</td>
</tr>
<tr>
<td>第10位</td>
</tr>
<tr>
<td>第11位</td>
</tr>
</tbody>
</table>

（1）
図1 决勝ラウンド及びコンソレーションの試合結果

17のサブスコア項目及びその簡単な説明を表2に示す。なお以下では、チーム名及びサブスコア項目名は、表1, 2に示した略号を使用する。

データ処理の方法：予選リーグ、決勝ラウンド及びコンソレーションにおいて消化された全試合（46試合）のサブスコア記録は、次に示す手順で加工・処理された。

(1) チーム別に集計された公式スコア17項目を、各チームの消化試合時間（分）で調整して、1試合平均の値に変換する（行列X：表3）。
(2) サブスコア項目間での相対比較を容易にするために、行列Xをサブスコア項目ごとに、チームにわたってZ得点（平均50, 標準偏差10）に変換する（行列Z：表4）。

なお表3, 4は比較の便宜上、決勝ラウンド進出チーム（以下U群と称す：1～8位）と、コンソレーション出場チーム（以下L群と称す：9～12位）の2グループに分割して表示している。表中の○印は、達成値が平均を1シグマ以上上回っていることを、×印は下回っていることを示している。但しFOUL, VIO, LSTについては、チームへの寄与の方向が他の項目とは逆であると考えられるので、反対の仕方でマークされている。

(3) 行列Xを基に、スコア項目間の相関行列、およびチーム間の相関行列を算出する。
(4) 以上のそれぞれの相関行列に対して主因子法を適用する。共通性の推定値としては、非対角成分の最大絶対値を使用する。
(5) 因子抽出に際しては、固有値1.0以上という規準を用いる。
(6) (5)で推定された有意因子に対して、ノーマル・パリマックス法を適用し、単純構造化された因子負荷行列を算出する（項目については表5、チームについては表6）。
表2 サブスコア項目一覧

<table>
<thead>
<tr>
<th>略号</th>
<th>項目名</th>
<th>備考</th>
</tr>
</thead>
</table>
| TPG/M | 3点野投成功本数 | 投射時にブロックされた場合も投射としてカウントする。
| TPG/A | 3点野投投射本数 | |
| FG/M | 2点野投成功本数 | 投射時にファウルされて不成功の場合は不成功としてカウントしない。
| FG/A | 2点野投投射本数 | |
| FT/M | 1点野投成功本数 | 投射時にバイオレーションがあってやり直しとなった場合は再試行をカウントする。
| FT/A | 1点野投投射本数 | |
| PTS | 得点数 | TPG-M, FG-M, FT-Mによる得点の合計。 |
| FOUL | ファウル回数 | パーソナル・ファウル及びテクニカル・ファウルのこと。 |
| RBD/O | オフェンス・リバウンド獲得本数 | ボールが床に触れる前に保持した場合は選手に、床に弾んでから保持した場合はチームにカウントする。（ここでは前者が対象） |
| RBD/D | ディフェンス・リバウンド獲得本数 | ボールをコントロールした上で味方にタップ・アウトし、それを味方が保持した場合は、タップした選手にカウントする。リバウンド・ボールがジャンプ・ボールとなった場合は、ジャンプ・ボールのボールを保持したチームのジャンパーにカウントする。 |
| X | リカバリーや - | ルーズ・ボール、ジャンプ・ボール etc |
| AST | アシスト本数 | パスを受けたシューターが相手ディフェンスをかわすためにビット、フェイク等を使った場合はカウントされない。ノーマークからのワンマン進攻の場合はパス・キャッチからシュートまでの間にドリブルが入っても良い。サイドからのストローインもアシストの対象となる。 |
| STL | スティール本数（インターセプト） | カットした相手ボールを、カットした本人ではなく味方のチームの他の選手が保持した場合は、カットした選手のスティールにカウントする。相手のミス等で、相手ボールがただまたま自チームのボール保持となった場合はカウントしない。 |
| VIO | バイオレーション回数 | ファウル以外の総ての反則のことをいう。（トラベリング、キックボール、ダブルドリブル、オーバータイム、ジャンバーバイオレーション等）。 |
| LST | ロストボール本数 | ファウル等により相手ボールになった事数をカウントする。 |
| BLK | ブロック・ショット本数 | カットやタップなどで相手のシュートのコースを大きく変えることによって得点をふせいた場合にカウントし、相手シュート・ボールに軽く触れた程度では、たとえそのシュートが不成功としてもブロックとはみなされない。
| | | ブロックされたボールはRBDの対象とはならない。 |
| GDD | グッド・ディフェンス本数 | 相手にミスを誘発させるディフェンスで、その後ボールがどちらになろうとも1つと数える。 |
表3 サブスコア項目の1試合当たりの値 (行列X)

<table>
<thead>
<tr>
<th>位</th>
<th>チーム名</th>
<th>TPG/M</th>
<th>TPG/A</th>
<th>FG/M</th>
<th>FG/A</th>
<th>FT/M</th>
<th>FT/A</th>
<th>PTS</th>
<th>FOUL</th>
<th>RBD/O</th>
<th>RBD/D</th>
<th>X</th>
<th>AST</th>
<th>STL</th>
<th>V / O</th>
<th>L / S</th>
<th>BLK</th>
<th>G / D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>URS</td>
<td>6.6</td>
<td>15.8</td>
<td>26.6</td>
<td>48.7</td>
<td>16.5</td>
<td>22.0</td>
<td>89.6</td>
<td>20.7</td>
<td>10.0</td>
<td>20.8</td>
<td>9.1</td>
<td>11.0</td>
<td>6.6</td>
<td>1.2</td>
<td>10.5</td>
<td>3.8</td>
<td>5.2</td>
</tr>
<tr>
<td>2</td>
<td>YUG</td>
<td>6.3</td>
<td>13.8</td>
<td>27.9</td>
<td>48.3</td>
<td>15.1</td>
<td>19.9</td>
<td>89.6</td>
<td>21.8</td>
<td>9.1</td>
<td>23.4</td>
<td>5.8</td>
<td>8.9</td>
<td>4.9</td>
<td>2.0</td>
<td>8.9</td>
<td>5.6</td>
<td>3.5</td>
</tr>
<tr>
<td>3</td>
<td>USA</td>
<td>×2.4</td>
<td>×5.6</td>
<td>×35.0</td>
<td>×63.3</td>
<td>14.5</td>
<td>19.8</td>
<td>91.6</td>
<td>×23.3</td>
<td>×14.4</td>
<td>23.0</td>
<td>×8.0</td>
<td>9.3</td>
<td>×9.1</td>
<td>×3.6</td>
<td>×7.6</td>
<td>5.0</td>
<td>5.9</td>
</tr>
<tr>
<td>4</td>
<td>AUS</td>
<td>×8.3</td>
<td>×19.9</td>
<td>×20.8</td>
<td>×41.5</td>
<td>11.9</td>
<td>17.6</td>
<td>78.1</td>
<td>×19.0</td>
<td>9.9</td>
<td>×19.3</td>
<td>×4.5</td>
<td>8.3</td>
<td>6.5</td>
<td>1.5</td>
<td>11.9</td>
<td>2.3</td>
<td>6.9</td>
</tr>
<tr>
<td>5</td>
<td>BRA</td>
<td>×8.4</td>
<td>19.4</td>
<td>×31.4</td>
<td>×58.0</td>
<td>19.3</td>
<td>22.4</td>
<td>12.5</td>
<td>×25.6</td>
<td>7.1</td>
<td>×13.3</td>
<td>×4.9</td>
<td>2.4</td>
<td>13.3</td>
<td>9.5</td>
<td>3.6</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>CAN</td>
<td>7.1</td>
<td>16.4</td>
<td>25.9</td>
<td>54.8</td>
<td>19.1</td>
<td>25.1</td>
<td>92.3</td>
<td>21.6</td>
<td>11.9</td>
<td>×20.5</td>
<td>6.8</td>
<td>9.9</td>
<td>6.1</td>
<td>1.3</td>
<td>9.5</td>
<td>×8.0</td>
<td>5.0</td>
</tr>
<tr>
<td>7</td>
<td>PUR</td>
<td>3.8</td>
<td>13.4</td>
<td>25.5</td>
<td>51.3</td>
<td>13.7</td>
<td>20.3</td>
<td>76.1</td>
<td>20.3</td>
<td>10.5</td>
<td>×20.7</td>
<td>6.4</td>
<td>×7.6</td>
<td>5.5</td>
<td>2.6</td>
<td>11.3</td>
<td>2.5</td>
<td>5.2</td>
</tr>
<tr>
<td>8</td>
<td>ESP</td>
<td>4.9</td>
<td>11.6</td>
<td>29.8</td>
<td>49.4</td>
<td>18.5</td>
<td>24.5</td>
<td>92.6</td>
<td>21.0</td>
<td>9.4</td>
<td>×23.0</td>
<td>×5.0</td>
<td>13.0</td>
<td>×3.6</td>
<td>10.8</td>
<td>10.8</td>
<td>10.8</td>
<td>5.3</td>
</tr>
<tr>
<td>AM</td>
<td>5.98</td>
<td>14.49</td>
<td>27.86</td>
<td>51.91</td>
<td>16.83</td>
<td>22.41</td>
<td>90.38</td>
<td>21.26</td>
<td>10.96</td>
<td>22.04</td>
<td>6.59</td>
<td>10.16</td>
<td>6.19</td>
<td>2.28</td>
<td>10.00</td>
<td>3.28</td>
<td>5.35</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>2.13</td>
<td>4.59</td>
<td>4.28</td>
<td>6.69</td>
<td>4.18</td>
<td>3.99</td>
<td>11.23</td>
<td>1.32</td>
<td>1.82</td>
<td>2.06</td>
<td>1.52</td>
<td>2.11</td>
<td>1.34</td>
<td>0.96</td>
<td>1.40</td>
<td>1.55</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>KOR</td>
<td>×8.7</td>
<td>×24.7</td>
<td>×22.9</td>
<td>×44.4</td>
<td>×9.0</td>
<td>×11.7</td>
<td>80.9</td>
<td>21.3</td>
<td>9.3</td>
<td>×14.4</td>
<td>6.9</td>
<td>×7.7</td>
<td>7.1</td>
<td>1.6</td>
<td>1.7</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>CAF</td>
<td>×3.0</td>
<td>12.3</td>
<td>×22.4</td>
<td>52.6</td>
<td>16.1</td>
<td>×26.7</td>
<td>×70.0</td>
<td>×19.7</td>
<td>×13.1</td>
<td>20.6</td>
<td>7.6</td>
<td>10.7</td>
<td>8.3</td>
<td>2.7</td>
<td>12.1</td>
<td>3.3</td>
<td>5.7</td>
</tr>
<tr>
<td>11</td>
<td>CHN</td>
<td>6.6</td>
<td>15.1</td>
<td>26.0</td>
<td>49.7</td>
<td>16.9</td>
<td>25.4</td>
<td>88.6</td>
<td>21.0</td>
<td>8.4</td>
<td>×14.9</td>
<td>6.1</td>
<td>10.4</td>
<td>7.6</td>
<td>×1.4</td>
<td>×14.0</td>
<td>2.6</td>
<td>9.4</td>
</tr>
<tr>
<td>12</td>
<td>EGY</td>
<td>4.1</td>
<td>14.3</td>
<td>23.3</td>
<td>49.9</td>
<td>×8.1</td>
<td>×11.6</td>
<td>×67.1</td>
<td>×25.6</td>
<td>×6.4</td>
<td>15.7</td>
<td>7.1</td>
<td>6.6</td>
<td>5.1</td>
<td>2.7</td>
<td>14.9</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>5.60</td>
<td>16.60</td>
<td>23.65</td>
<td>49.15</td>
<td>12.53</td>
<td>18.85</td>
<td>76.65</td>
<td>21.90</td>
<td>9.30</td>
<td>16.40</td>
<td>6.93</td>
<td>8.85</td>
<td>7.03</td>
<td>2.10</td>
<td>12.60</td>
<td>2.50</td>
<td>7.10</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>2.56</td>
<td>5.53</td>
<td>1.61</td>
<td>3.43</td>
<td>4.62</td>
<td>8.33</td>
<td>9.94</td>
<td>2.56</td>
<td>2.81</td>
<td>2.85</td>
<td>0.62</td>
<td>2.02</td>
<td>1.37</td>
<td>0.70</td>
<td>2.43</td>
<td>0.66</td>
<td>1.94</td>
<td></td>
</tr>
<tr>
<td>体</td>
<td>AM</td>
<td>2.08</td>
<td>4.58</td>
<td>3.91</td>
<td>5.55</td>
<td>4.43</td>
<td>5.43</td>
<td>11.84</td>
<td>1.66</td>
<td>2.13</td>
<td>3.40</td>
<td>1.21</td>
<td>2.00</td>
<td>1.30</td>
<td>0.81</td>
<td>2.03</td>
<td>1.28</td>
<td>1.47</td>
</tr>
<tr>
<td>順位</td>
<td>チーム名</td>
<td>TPG/M</td>
<td>TPG/A</td>
<td>FG/M</td>
<td>FG/A</td>
<td>FT/M</td>
<td>FT/A</td>
<td>PTS</td>
<td>FOUL</td>
<td>RBD/O</td>
<td>RBD/D</td>
<td>X</td>
<td>AST</td>
<td>STL</td>
<td>VIO</td>
<td>LST</td>
<td>BLK</td>
<td>GDD</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>URS</td>
<td>53.61</td>
<td>51.33</td>
<td>50.36</td>
<td>45.87</td>
<td>52.50</td>
<td>51.43</td>
<td>53.21</td>
<td>45.33</td>
<td>48.08</td>
<td>51.89</td>
<td>56.40</td>
<td>51.03</td>
<td>37.51</td>
<td>48.19</td>
<td>56.10</td>
<td>45.01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>YUG</td>
<td>52.17</td>
<td>46.96</td>
<td>53.69</td>
<td>45.15</td>
<td>49.34</td>
<td>47.56</td>
<td>53.21</td>
<td>51.96</td>
<td>43.85</td>
<td>59.53</td>
<td>42.57</td>
<td>45.89</td>
<td>37.91</td>
<td>47.34</td>
<td>40.31</td>
<td>70.11</td>
<td>33.46</td>
</tr>
<tr>
<td>3</td>
<td>USA</td>
<td>×33.38</td>
<td>29.04</td>
<td>71.86</td>
<td>72.19</td>
<td>47.99</td>
<td>47.38</td>
<td>54.90</td>
<td>60.99</td>
<td>68.77</td>
<td>58.36</td>
<td>60.73</td>
<td>47.64</td>
<td>70.31</td>
<td>66.99</td>
<td>33.90</td>
<td>65.44</td>
<td>49.77</td>
</tr>
<tr>
<td>4</td>
<td>AUS</td>
<td>○61.80</td>
<td>60.29</td>
<td>35.52</td>
<td>32.89</td>
<td>42.12</td>
<td>43.32</td>
<td>43.49</td>
<td>35.09</td>
<td>47.61</td>
<td>47.48</td>
<td>31.84</td>
<td>42.89</td>
<td>50.26</td>
<td>41.20</td>
<td>55.09</td>
<td>44.42</td>
<td>56.57</td>
</tr>
<tr>
<td>5</td>
<td>BRA</td>
<td>○62.28</td>
<td>59.20</td>
<td>62.65</td>
<td>62.63</td>
<td>72.36</td>
<td>66.35</td>
<td>73.07</td>
<td>55.57</td>
<td>59.84</td>
<td>66.01</td>
<td>53.30</td>
<td>67.92</td>
<td>73.91</td>
<td>52.25</td>
<td>43.27</td>
<td>54.54</td>
<td>49.09</td>
</tr>
<tr>
<td>6</td>
<td>CAN</td>
<td>56.02</td>
<td>52.64</td>
<td>48.57</td>
<td>56.87</td>
<td>58.37</td>
<td>57.14</td>
<td>55.49</td>
<td>50.75</td>
<td>57.01</td>
<td>51.00</td>
<td>50.83</td>
<td>50.90</td>
<td>47.17</td>
<td>38.74</td>
<td>43.27</td>
<td>32.74</td>
<td>43.66</td>
</tr>
<tr>
<td>7</td>
<td>PUR</td>
<td>40.12</td>
<td>46.09</td>
<td>47.55</td>
<td>50.56</td>
<td>46.18</td>
<td>48.30</td>
<td>41.80</td>
<td>42.92</td>
<td>50.43</td>
<td>51.59</td>
<td>47.52</td>
<td>39.38</td>
<td>42.54</td>
<td>54.71</td>
<td>52.14</td>
<td>45.98</td>
<td>45.01</td>
</tr>
<tr>
<td>8</td>
<td>ESP</td>
<td>45.42</td>
<td>42.15</td>
<td>58.55</td>
<td>47.13</td>
<td>57.02</td>
<td>56.03</td>
<td>55.75</td>
<td>47.14</td>
<td>45.26</td>
<td>58.36</td>
<td>35.97</td>
<td>66.42</td>
<td>45.63</td>
<td>66.99</td>
<td>49.67</td>
<td>46.76</td>
<td>46.59</td>
</tr>
<tr>
<td></td>
<td>AM</td>
<td>50.60</td>
<td>48.46</td>
<td>53.59</td>
<td>51.66</td>
<td>53.24</td>
<td>52.19</td>
<td>53.87</td>
<td>48.72</td>
<td>52.61</td>
<td>55.53</td>
<td>49.07</td>
<td>52.18</td>
<td>47.85</td>
<td>50.71</td>
<td>45.73</td>
<td>52.01</td>
<td>46.03</td>
</tr>
<tr>
<td>9</td>
<td>KOR</td>
<td>○63.73</td>
<td>70.78</td>
<td>40.89</td>
<td>38.72</td>
<td>35.57</td>
<td>32.45</td>
<td>45.86</td>
<td>48.95</td>
<td>44.79</td>
<td>33.06</td>
<td>51.65</td>
<td>39.88</td>
<td>54.89</td>
<td>42.43</td>
<td>42.77</td>
<td>39.75</td>
<td>64.05</td>
</tr>
<tr>
<td>10</td>
<td>CAF</td>
<td>×36.27</td>
<td>43.68</td>
<td>39.61</td>
<td>52.90</td>
<td>51.60</td>
<td>60.09</td>
<td>36.65</td>
<td>39.31</td>
<td>62.66</td>
<td>51.30</td>
<td>57.43</td>
<td>54.90</td>
<td>64.14</td>
<td>55.94</td>
<td>56.08</td>
<td>52.21</td>
<td>48.41</td>
</tr>
<tr>
<td>11</td>
<td>CHN</td>
<td>53.61</td>
<td>49.80</td>
<td>48.83</td>
<td>47.67</td>
<td>53.40</td>
<td>57.69</td>
<td>52.37</td>
<td>47.14</td>
<td>40.56</td>
<td>34.53</td>
<td>45.05</td>
<td>53.40</td>
<td>58.74</td>
<td>39.97</td>
<td>65.44</td>
<td>46.76</td>
<td>73.57</td>
</tr>
<tr>
<td>12</td>
<td>EGY</td>
<td>41.57</td>
<td>48.06</td>
<td>41.92</td>
<td>48.03</td>
<td>33.54</td>
<td>22.27</td>
<td>34.20</td>
<td>74.85</td>
<td>31.15</td>
<td>36.89</td>
<td>53.30</td>
<td>34.38</td>
<td>39.46</td>
<td>55.94</td>
<td>69.87</td>
<td>45.20</td>
<td>45.69</td>
</tr>
<tr>
<td></td>
<td>AM</td>
<td>48.80</td>
<td>53.08</td>
<td>42.81</td>
<td>46.68</td>
<td>43.53</td>
<td>45.63</td>
<td>42.20</td>
<td>52.56</td>
<td>44.79</td>
<td>38.95</td>
<td>51.86</td>
<td>45.64</td>
<td>54.31</td>
<td>48.37</td>
<td>58.54</td>
<td>45.98</td>
<td>57.93</td>
</tr>
<tr>
<td>全</td>
<td>AM</td>
<td>50.00</td>
<td></td>
</tr>
<tr>
<td>体</td>
<td>SD</td>
<td>10.00</td>
</tr>
</tbody>
</table>
表5 サブスクロータ項目による因子負荷行列

<table>
<thead>
<tr>
<th>項目名</th>
<th>第1因子</th>
<th>第2因子</th>
<th>第3因子</th>
<th>第4因子</th>
<th>共通性</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPG/M</td>
<td>0.150</td>
<td>0.950</td>
<td>0.001</td>
<td>-0.187</td>
<td>0.960</td>
</tr>
<tr>
<td>TPG/A</td>
<td>-0.094</td>
<td>0.915</td>
<td>-0.180</td>
<td>-0.080</td>
<td>0.885</td>
</tr>
<tr>
<td>FG/M</td>
<td>0.363</td>
<td>-0.373</td>
<td>0.724</td>
<td>-0.110</td>
<td>0.807</td>
</tr>
<tr>
<td>FG/A</td>
<td>0.295</td>
<td>-0.508</td>
<td>0.647</td>
<td>0.178</td>
<td>0.796</td>
</tr>
<tr>
<td>FT/M</td>
<td>0.934</td>
<td>0.024</td>
<td>0.266</td>
<td>-0.112</td>
<td>0.956</td>
</tr>
<tr>
<td>FT/A</td>
<td>0.961</td>
<td>-0.120</td>
<td>0.045</td>
<td>0.100</td>
<td>0.950</td>
</tr>
<tr>
<td>P T S</td>
<td>0.654</td>
<td>0.250</td>
<td>0.582</td>
<td>-0.294</td>
<td>0.872</td>
</tr>
<tr>
<td>FOUL</td>
<td>-0.364</td>
<td>-0.276</td>
<td>0.331</td>
<td>-0.239</td>
<td>0.373</td>
</tr>
<tr>
<td>RBD/O</td>
<td>0.456</td>
<td>-0.247</td>
<td>0.528</td>
<td>0.450</td>
<td>0.708</td>
</tr>
<tr>
<td>RBD/D</td>
<td>0.597</td>
<td>-0.329</td>
<td>0.462</td>
<td>-0.372</td>
<td>0.816</td>
</tr>
<tr>
<td>X</td>
<td>-0.088</td>
<td>-0.156</td>
<td>0.467</td>
<td>0.309</td>
<td>0.346</td>
</tr>
<tr>
<td>A S T</td>
<td>0.899</td>
<td>-0.019</td>
<td>0.145</td>
<td>-0.021</td>
<td>0.826</td>
</tr>
<tr>
<td>S T L</td>
<td>-0.025</td>
<td>-0.210</td>
<td>0.125</td>
<td>0.780</td>
<td>0.668</td>
</tr>
<tr>
<td>V I O</td>
<td>0.049</td>
<td>-0.773</td>
<td>0.168</td>
<td>-0.102</td>
<td>0.639</td>
</tr>
<tr>
<td>L S T</td>
<td>-0.218</td>
<td>-0.045</td>
<td>-0.741</td>
<td>0.049</td>
<td>0.601</td>
</tr>
<tr>
<td>B L K</td>
<td>0.086</td>
<td>-0.402</td>
<td>0.458</td>
<td>-0.165</td>
<td>0.406</td>
</tr>
<tr>
<td>G D D</td>
<td>-0.049</td>
<td>0.400</td>
<td>-0.257</td>
<td>0.610</td>
<td>0.601</td>
</tr>
<tr>
<td>計與</td>
<td>4.044</td>
<td>3.448</td>
<td>3.097</td>
<td>1.622</td>
<td>12.211</td>
</tr>
<tr>
<td>％</td>
<td>23.788</td>
<td>20.284</td>
<td>18.216</td>
<td>9.5441</td>
<td>71.831</td>
</tr>
</tbody>
</table>

表6 チームによる因子負荷行列

<table>
<thead>
<tr>
<th>順位</th>
<th>チーム名</th>
<th>第1因子</th>
<th>第2因子</th>
<th>第3因子</th>
<th>第4因子</th>
<th>共通性</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>UR S</td>
<td>-0.108</td>
<td>0.280</td>
<td>0.101</td>
<td>-0.335</td>
<td>0.387</td>
</tr>
<tr>
<td>2</td>
<td>YUG</td>
<td>-0.372</td>
<td>0.028</td>
<td>0.701</td>
<td>0.099</td>
<td>0.640</td>
</tr>
<tr>
<td>3</td>
<td>U S A</td>
<td>-0.770</td>
<td>-0.131</td>
<td>-0.157</td>
<td>0.037</td>
<td>0.642</td>
</tr>
<tr>
<td>4</td>
<td>AUS</td>
<td>0.808</td>
<td>-0.078</td>
<td>-0.012</td>
<td>0.023</td>
<td>0.660</td>
</tr>
<tr>
<td>5</td>
<td>BRA</td>
<td>-0.149</td>
<td>0.726</td>
<td>0.478</td>
<td>0.157</td>
<td>0.806</td>
</tr>
<tr>
<td>6</td>
<td>CAN</td>
<td>0.067</td>
<td>0.729</td>
<td>-0.019</td>
<td>-0.178</td>
<td>0.568</td>
</tr>
<tr>
<td>7</td>
<td>PUR</td>
<td>-0.364</td>
<td>-0.266</td>
<td>-0.277</td>
<td>0.390</td>
<td>0.432</td>
</tr>
<tr>
<td>8</td>
<td>ESP</td>
<td>-0.159</td>
<td>0.236</td>
<td>0.163</td>
<td>0.739</td>
<td>0.654</td>
</tr>
</tbody>
</table>

群
L	KOR	0.634	-0.253	0.010	-0.484	0.701
9	CAF	-0.269	-0.026	-0.662	0.107	0.523
10	CHN	0.646	-0.069	-0.310	-0.065	0.522
11	EGY	0.042	-0.710	0.029	-0.065	0.511

| 計與 | 2.475 | 1.856 | 1.400 | 1.308 | 7.047 |
| ％ | 20.621 | 15.530 | 11.665 | 10.897 | 58.721 |

結果と考察

1. サブスコラ項目間についての検討

(1) TPG については、1985年 FIBA**のルール改正以来適用されたものだが、改正直後より独立した効果をとるようになったので、セッショナルなパフォーマンスを発揮する項目である。特に今回の結果においても、同前**、B.103、137同様に、戦術的役割がチームによって異なる性

格の項目であることが再確認された。群別平均で比較してみると、U群8チームとL群4チームとの間には、X_{TPG/A}*、X_{TG/M}で0.38T/Gの若干の差はみられたものの、前回のように各群、平均値や、ばらつきなどに極端な差は見られなかった。しかし、あいかわらず頻繁にシュートしているチームは、KORで、Z_{TPG/A}*、70.8と非常に高い値を示しているが、これは前回**と同傾向にあり、1試合平均に
パケットボールの競争力構造の分析

すると24.7本もシュートしていることになる。一方、選手に少ない値を示したのは、USA の ZTPGA: 29.04, XTPGA: 5.67, で、最高値の KOR とでは X 値において 4.4 倍の差があり、攻撃スタイルに極端な違いがみられる。

(2) FG は少なくとも、パケットボール競技において、PTS を構成する上で得点源としては核となりうるべき代表的な項目であるが、最近では前項の TPG の使用頻度も増加している傾向にある。しかしこ、より攻撃回数を増やすことや、できる限りゴール付近にボールを運び確率の高いシュート (FG)、あるいは、レイ・アップ・シュートやリバウンド・シュートに結び付けることは、あくまでも、競技の基本的攻撃理論であることにより、オフェンスのペースバック・パターンを形成している項目といえる。当然今回も FG は全体的にみると XFGM: 26.47, PTS (XPTS: 85.80pG*8) の 61.7% を占めている。

また、群別平均でも、U群の XPTS: 90.38pG, XFGM: 27.867, で 61.7%、L群の XPTS: 76.653, XFGM: 23.657 で 61.7%と等しい割合であった。シュートの積極性 (FG/A) は、USA の XFGM/A: 63.37, BRA の XFGM/A: 58.05 が高く、逆に消極的なのは、AUS の XFGM/A: 41.57, KORの XFGM/A: 44.47, で TPG と対称的になっていることがわかる。また、決定数でみても USA XFGM: 35.07, BRA の XFGM: 31.47 が同様に高く、総合得点に大きく貢献している。

(3) FT は、攻撃の積極性を表す一つのパラメータとして考えられる。主にシュート・モーションでのビーサーカル・ファウルやチーム・ファウル (7 ファウル以降) に対して与えられる 3 ポイント・スロー、あるいはワン・エンド・ワン・スローがある。特にポイント・ゲーター阻止の為のチェック、センターやプレイヤーが得意とするポスト・プレイやリバウンド・シュートのチェック、さらには逆攻パターンからのレイ・アップ・シュートやカット・インなどの面で発生やすい。また、FT は、他のシュート場面とは異なるメンタルな要素が強く影響していることから TPG や FG の％と同様の評価はいかがは出来ない、ということから、従来までの指摘されてきているが、今回もその傾向を示している。群別平均でもとると XFP/M, XFT/A のどちらも U群が L群にそれぞれ XFP/M: 3.567, XFT/A: 4.307 で勝っており、積極性、正確性共に優れていることがわかる。チーム別でみると、特に攻撃の積極性 (FT/A) を示したのは、BRA の XFT/A: 30.17, ZFT/A: 66.35, XFT/M: 25.3 で、XFT/M: 72.36 であり、逆に殆どファウルも含まれず、シュートもままならなかったのは、9 位の KOR で XFT/A: 11.7, ZFT/A: 32.41, XFT/M: 9.0, ZFT/M: 35.57 であり、また最下位の EGY で XFT/A: 11.67, ZFT/A: 32.27, XFT/M: 8.17, ZFT/M: 35.54 と低い値を示した。

ちなみに決定率は、BRA 84.1%, KOR 76.9%, EGY 69.8% である。なお、最低の決定率を示したのは、CAF 60.3% (XFT/M: 16.17, XFT/A: 26.7) であった。

(4) PTS はシュート項目の決定数の全てを含めたもので、TPG/M, FG/M, FT/M はその割合率にしたがって、各々 PTS に類似したパターンを示している。○×でみても L群に○のち、チームはなく、群別平均では U群 (XPTS: 90.38pG) を 13.73 pG 上回っており、少なくとも得点力が大きく、競技力に影響することを表している。今回のこの結果も従来の報告と一致しているものである。ところが、群別で予選ラウンドまでの2試合と、決勝ラウンドにおける2〜3試合を平均得点にして比較すると、U群では予選ラウンドで XPTS: 96.26pG, XFT/M: 84.50pG, L群は予選ラウンドで XPTS: 72.7 pG, XFT/M: 80.60pG と U群と L群との差は主要に予選ラウンドにおいて影響していることが見られる。また、U群についてみると、上位のラウンドに進出するに従って得点が低くなり、ロー・スコアのゲームが多くなることより、お互いに競技力の高いチームであればある程、得点を入れるよりも失点を抑える傾向があることを示唆しているということが考えられる。ところで、チーム別でみると5位の BRA で XPTS: 113.1pG, ZPTS: 73.07 と
平均よりも2.3シグマ以上も高い驚異的な得点力を発揮している。これは12チームの中の最高値であり、このことにより得点力は、必ずしも順位相関に一致していないことが顕える。
(5) FOUL とは普通、原則的に犯してはいけない無益な行為として受けるべきだが、今回の結果でも前回の報告と同様に、ファウル行為そのものを戦術的選択技の一部として捉えることができると思われる。例えばターン・オーバーからの攻撃に展開されるような時などのように、試合の戦況に応じて、常に相手に優勢を保たないようにする為に、ダメージを最小限に食い止めようとする1対策である。さらにはリバウンドやルーズ・ボールなどの得点争いの場面など、いかなるプレイの積極性を示すパラメーターであるかより適切とされる。
当然ながらファウルはオフェンスよりも、ディフェンスに多くみられる。その中でも、相手チームの攻撃を阻止しようとするポール・チェーンなどの場合に多く見られる。つまり、ファウルを独立して検討するだけでなく、その急こうすべき項目の相互関係を含めて判断することによって、ファウルの持つ意味を理解することができよう。チーム別で見ると、高い値を示したのは今大会最下位の EGY (Zfool:74.85) と3位の USA (Zfool:60.89) が挙げられる。この2チームは競技力と比較すると順位不相応の、両極端な関係で表れている。これはつまり、USAはディフェンスにおいて、いろいろとポール・チェーンする為にファウルが多くなっているといえる。逆に EGY のように、本質的にディフェンス力が低い為に多くなるという2つのケースが挙げられる。
(6) RBD は、バスケットボール競技において、シュートに対するフォロー技術の能力評価であり、展開されるさまざまなプレイの中で特に重要な局面といえる。Cowensは、「シュートの75%はリバウンドの対象となり、そのうち75%を取った者がゲームに勝てる」と述べているが、従来の著名な指導者[13,12,11,10,11] もその重要性については指摘している。我々の報告[9,10] で、基底次元の1部としてその重要性を認められている。○×でみてても、群別平均でみてても、U群がL群よりも良好な成績を示しており、U群はXrb/dで1.66T/G、Xrb/d/dで5.64T/G L群より多くリバウンドを獲得している。チーム別では、U群ではUSAがZrb/d:0.68.77と平均より約2シグマにもおよぶ群の高い獲得力を発揮しており、BRA と CAN もそれに近い優れた値を示している。また、RBD/Dでは、BRAがZrb/d/d:66.01と平均より1.6シグマ優れた獲得力を発揮しており、YUG、USA、ESPも同様1シグマに近い値を示している。全体的にみてても、U群のチームが高いリバウンド力を発揮しているのが目につく。L群においてはCAFがRBD//OでZrb/d:0.62.66と高い値を示しているのにみである。
(7) この X(Recovery)という項目は、今回新たに設けられたスコア項目であり、表2にも示す通り、特にオフェンス社会、ディフェンスに限定せず、プレイ中でのルーズ・ボールの奪い合いや、ジャンプ・ボールなどの際のボール獲得を各チームにもたらしたものをカウントするものである。つまり、先のシュート・ミスに対応する、リバウンド・プレイのように、プレイ中に発生する瞬間的なミスやトラブルに対応する、フォロー・プレイの1つといえる。X値の高いチームは、ゲームの攻防の中でトラブルをまねきながらも、より多くの攻撃チャンスを作り出しているといえよう。群別平均でみてても、上位群と下位群との差はみられず、L群がやや高い傾向にある。チーム別では、1位の URS のZx:69.81、3位の USA のZx:60.73が高い値を示し、また、L群に位置していたが、低い値を示したのが、4位の AUS のZx:31.84、8位の ESP のZx:35.97であった。
(8) AST とは、得点に結びつくシュートを引き出す上で巧みなパス・ワークを説明する項目である。よりゴールに近いポジションで、より確率の高いネットワークのシュートを生むためのコンビネーション・オフェンス能力の代表値といえる。この Anastasは、主にガード・プレイヤーよってもたらされるものである。特に速攻時に、ポイント・ガッター（シューター）
あるいはオフェンスの際のピック・センターやヘへのパスと、その貢献度は大きい。仮にFG/Mの数値が、優れたアシストとパスによってもたらされているとするならば、BRAではXFG/M:31.47%の33.4%に相当する部分が、ESPではXFG/M:29.87%の34.6%に相当する部分が寄与していることになる。全体平均ではFG/Mの36.7%を占めていることになる。また、低い値を示したチームは、下位のEGYと7位のPURで、それぞれ28.3%、29.8%という数字を示した。つまり、この2チームは自ずとFG/Mが少ないチームといえる。

(9) STLとBLKについては、どちらもディフェンス能力を示す項目であるが、STLは、ディフェンスでのボール・チャージを意味し、ディフェンス能力を誇る項目の1つといえる。つまり、積極的にボールにかかわらず、インターポンやパス・カット、ドリブル・カットを試みようするとすることで、実際にボールを獲得した能力を表す。ところが、BLKの場合は同じボール・チャージを表すディフェンス項目でありながら、STLとは正反対の局面で比較される。つまり、STLがパスやドリブルに対してアタックするアウトサイドの平面的に行われるボール・チャージに対し、一方のBLKはゴール付近の空中で行われるシュート・ブロックという、いわゆるインサイドでしかない、立体的なディフェンス能力を表す項目と考えられる。群別平均で見てみると、XSTLではU群（6.19t/g）がL群（7.03t/g）より少なく、逆にXBLKではU群（3.28t/g）がL群（2.50t/g）より多い値を示している。このことより、上位群はオフェンス同様にインサイドを固める傾向があることが窺える。

(10) VIOLSTの2項目は、従来いうターン・オーバーよりも関係するもので、主にオフェンス・プレイヤーが数えられるもので、犯すと同時に相手ボールとなる。今大会では、それが分化した形となって挙げられているといえる。内容については、表2で示しているように、2項目とも主に、オフェンス・ミスの相対になるが、バイオレーションは反則行為を犯すことによるミスという選挙がなされる。いずれにしても、オフェンスにおける攻撃能力、特にシュートまでの「ツメ」の技能を測る項目であり、値が高くなるに従って、その能力評価は悪くなる。前回16で記録した1回のターン・オーバーが1失点につながるというCousy13の指針を考慮しながら、STLとの関係を含めて仮説すると、次のようなことが示される。全体の平均では、XVIO+LST:13.09t/g、XSTL:6.47t/gとなるので、XPTS:85.80t/gの15.3%は、自ボール保持の喪失に起因し、逆に15.0%が相手ボールをスティールすることからもたらされたことになる。群別平均でみると、VIOではU群がL群よりもXVIO:0.18t/g多く、LSTではU群がL群よりもXSTL:2.60t/g少ない。また、STLでもU群がL群よりXSTL:0.84t/g少なかった。

チーム別にみると、VIOでは、URS（ZVIO:37.51）、CAN（ZVIO:33.74）、そしてCHN（ZVIO:39.97）と値を示しており、USAとESP（ZVIO:66.99）と目立ってミスが多い。しかし、LSTではUSAのみがXSTL:7.67t/g、LST:33.90と低い値を示し、優れた能力を発揮していることがわかる。逆に劣っていたのは、CHN（ZLST:65.44）とEGY（ZLST:69.87）の2チームである。

(1) GDD(Good Defense)も、今回新たなサブスコア項目として、設けられたものであり規準があまり明確に述べられていない。少なくとも、ボール獲得の有無にかかわらず、相手オフェンスプレッシャーをかかることにより、リズムを狂わせ、ミスを誘うディフェンスを、ディフェンス・ボール、ジャンプ・ボールなどがそれに関連したミスである。つまり、プレッシャー・ディフェンスの指標の1つとして捉えることもある。特にこれはゲーム中、常に発揮される性格のものではなく、ゲームの状況に応じた戦術的要素の強い項目である。O×でみるとき、U群は○が1つも少なく、唯一×がYUGについている。逆にL群で○のついているチームはKORとCAFの2つである。群別平均でみてみると、U群がL群よりもXGDD:1.75t/gと少なく、ディフェンスでプレッシャーをかけていないことがわかる。一見矛盾しているようにも
思えるこの結果は、先の著者らの報告を引用すると、整合性がでてくる。つまり、ゲームの展開とディフェンス・パターンを関連させるならば、もともとゲームの展開が不利な状況でなければ、あえてトラブルを起こさせる為に無理なプレッチャーを掛ける必要がない。ゆえに、シート・チェックに焦点をし、相手にできるだけ不本意なアクションをさせ、リバウンドの為にゴール下を固めるというケースである。一方、常に守れやすく不利なゲーム展開を強いられるようなチームが、形勢挽回のために外角に対するプレッチャー・ディフェンスを行う機会が多くなるというケースである。つまり、L群のKORやCHNはインサイド攻撃をなんとか阻止する為に、内角でブロックされないように外角から当たる激しいディフェンスを行っていることが窺える。この指摘は2チームのディフェンス・リバウンド獲得力（ZRB/D: KOR＝33.06, CHN＝34.53）の低さ、U群全体のチームにおける安定度ディフェンス・リバウンド獲得力などを考慮することによって、さらにはきっと裏付けるものである。

2. 項目間の因子構造の解釈

抽出した4因子解をもとに、それぞれの因子の解釈を試みた。（表5）

(1) 第1因子は、設定された4因子解の中で全変動の24%を説明する因子である。表から明らかになるように、ここで高い因子負荷量を示しているスコア項目は、FT/A（0.961）、FT/M（0.934）、AST（0.897）、PTS（0.654）、RBD/D（0.597）の5項目である。この因子は、「ファウル獲得→フリー・スロー試行」というプレイ展開に対応している。そのような展開が典型的に見られるのは、次の2つのケースである。①ディフェンス・リバウンド獲得から生じる速攻や、巧みなパス・ワークからもたらされるカット・イン・プレイによってファウルをさせたフリー・スロー試行という一連の流れ。②巧みなパス・ワークから導き出される、シューターからのパピ・センターによるインサイド攻撃に対し、やむをえず犯してしまうファウルからのフリー・スロー試行、そしてカウントという攻撃ケースである。いずれも、これら2種類のオフェンス・パターンは、従来のパスケットボールにおける攻撃の諸理論において、非常にオーソドックスなスタイルといえるよう。つまり、攻撃パターンの基本構造として存在する重要な因子とえる。この結果は前回までの報告に10、11でも（第3次元と第3因子に）同様のスタイルで現れている。

(2) 第2因子の全変動に対する寄与率は20%である。高い因子負荷量を示したスコア項目は、TPG/M（0.950）、TPG/A（0.915）、VIO（－0.773）、FG/A（－0.508）の4項目である。この因子は主にTPGと関連の強い因子であろう。TPGとは対称的な形で、FG/AやVIOが逆相関として現れていることを考慮すると、ここでは、FGを挙げることによってよりよりやすい、インサイド攻撃の際のVIOが、アウトサイドからのTPGを行うことにより、軽減される為であろう。さらに逆の見方をするならば、TPGを行っていないチームは、インサイド攻撃、あるいはリバウンド・プレイなどを得意としている反面、オフェンス・ミスを犯しやすいという傾向にあるのであろう。つまり、この因子は前回の報告にもあるように、TPGというものがFGに対して、単に得点源として独立した次元であるということのみを意味しているものと考えられる。さらに付け加えるならば、竹村は、「3ポイント・シュートとはガード・プレイーアーとフォワード・プレイーアーによって撃たれるものである」としている。このことより、この因子のカラーはガードやフォワード・プレイーアーの関連領域を代表するものであると考えられる。

(3) 第3因子の全変動に対する寄与率は15%である。高い因子負荷量を示したスコア項目は、FG/M（0.724）、FG/A（0.647）、PTS（0.582）、RBD/O（0.528）、LST（－0.741）の因子は、RBD/Oからのゴール下シュートはもちろんのこと、インサイド攻撃から生まれるFGからもたらされる得点力というものが、主な攻撃のスタイルといえる。また、LSTが逆相間として現
バスクケットボールの競技力構造の分析

3. チーム間の因子構造の解釈

サブスコアから求められた今大会の競技力空間を分析しつつ、参加12チームの競技力を比較検討するために、先の項目間の因子構造の手順と同様にチーム間による相関行列を求め、因子分析法を行った。そこから得られた4因子解析の負荷量を示した（表4、図2～1～3）。

(1) 図2-1は、第1因子と第2因子の因子負荷量のプロットである。図から明らかに、それぞれがX軸とY軸による濃縮ロジスに沿って、お互いに対称的に位置することより、各因子はそのチームの持つカテゴリーで説明することが出来る。第1因子を説明するのは、USA（-0.770）に対して、AUS（0.808）、CHN（0.646）、KOR（0.634）の3チームのグループである。つまり、第1因子ではUSAとAUS、CHN、KORのグループとが対称に関係し、全体的に説明できる軸であるといえよう。また、第2因子は同様にEGY（-0.710）に対してCAN（0.729）、BRA（0.728）という2チームのグループによって説明される軸といえよう。同様なことが以下についてもいえる。

(2) 図2-2は、第2因子と第3因子の因子負荷量のプロットである。X座標を張っているチームは、EGYに対して、CANである。前述で第2因子を説明するCANと同じグループであったBRAは、第3因子に関係することにより、CANよりも（十）値方向へ離脱し、第1限界へ現れる結果となった。つまり、第2因子に関係のあるBRAは第3因子の要素にも関係があり、これら2つが持っている要素によって、チーム・カラーが変化するということがいえる。また、Y座標を張っているチームは、CAF（-0.662）に対しYUG（0.701）の方が対称的に関係ししている。つまり、第3因子はCAFとYUGの2チーム間のもう1つチーム・カラーによって、説明される軸と観われる。
(3) 図2－3は、第3因子と第4因子との因子負荷量のプロットである。X座標を張っているチームはCAFに対してYUGである。さらにBRAがYUGの手前に位置しており、この軸にもBRAが関わり合っていることを意味してい る。また、この関係と同じようなことがKORについても他の因子間において見られる。Y座 標を張っているチームは、URS (－0.535) と KOR (－0.484) というグループに対してESP (0.739) が対称的に位置しており、この3チームのカラーによって説明される軸といえよう。

以上因子負荷量のプロットより、何らかの形で4因子に対して、各チームがそれぞれのチーム・カラーを持って、関わりあっていることが観られた。

さらに詳しくチーム・カラーをみるために、抽出された因子負荷量とサブスコア項目との関連について検討を試みた。また、特に代表的 なプロットを挙げて、各因子ごとに説明した（図3－1～6－1）。なお、プロットについては、横軸に因子負荷量、縦軸にサブスコア項目のX値をとり、それぞれの平均値の位置にガ ンクロスを描いてある。

(1) 第1因子は、設定された4因子間の中で、全変動の20.6％という最も大きい割合を占めて いる因子である。この因子と高い相関を示した項目は、TPG/M, TPG/A（図3－1）、GDD で、逆相関として現れたのはFG/M, FG/A（図3－2）、RBD/D, BLK, VIOの以上8項目であった。このことより、TPGを専門的に使
巴斯ケットボールの競技力構造の分析

チームと FG を専門的に使うチームを分けて考えると、バスケットボールのセオリーであるインサイド・プレイの展開を含まないチーム TPG を狙うチームではディフェンスにおいても、アウトサイドで勝負をして行かなければならず、インサイドでプレイをさせないチーム、インサイドで協力し合う、コンピューティング・ディフェンスを行っていることが観察できる。もちろんインサイドに強い FG を狙えるチームは、外にせず確実なショート・ブロックやリバウンドと、オフェンスと同様にインサイドで勝負する守りを行っていることが観察できる。つまり、この因子はオフェンスとディフェンスの両面において、インサイド型チームとアウトサイド型チームを説明する軸といえよう。以上の説明に対して、先の関係

チームを説明すると、USA のフィールド・ゴールやリバウンド・プレイなどに留意するインサイド型のチームに対し、AUS, KOR, CHN などは逆にアウトサイド型に強く現れるチーム・カラーを持っていると判断されるよう。(2) 第 2 因子は、この因子の全変動に対する寄与率は 15.5% であった。ここでの関係を示した項目は、FT/M (図 4-1), FT/A, PTS (図 4-2), RBD/O, RBD/D, そして AST と全て正の相関で示された 6 項目であった。ここでは、リバウンド獲得力と、巧みなアシスト・パスからもたらされる確実な得点力のある攻撃について説明できる軸であると思われる。FT は、攻撃力（シュート場面でのフィールドや 7 ファウル・アナロジーなど）の一つの目安になる項目といえる。ここで全欠 6 項目の相互関係を考慮し
てプレイを阻むと、次のようにスタイシが浮かぶ。1つは、ビッグ・センターとパワーフォワードのオフェンス・リバウンドから、再シュート。2つ目は、ディフェンス・リバウンドから展開される遠攻。3つ目は、巧みなアシスト・パスからもたらされる、ポイント・ゲッター（ビッグ・センター、シューターなど）のプレイである。以上に挙げたプレイの共通点は、全てにおいて得点に結び付く確実性の高いプレイであり、これらは、バスケットボールの諸理論と符合する基本的攻撃スタイルといえよう。この因子は、前述の項目間の因子構造の解釈で挙げられた第1因子（RBD/Oを除く）と同様なスタイルで現れていることが窺える。つまり、ここでの因子は単純に「得点力」という攻撃力の1側面ののみを代表していると言ってよい。

以上の説明に従って、先の関係チェーンを当てはめてみると、EGY、CAN、そしてBRAの2チームが挙げられるが、EGYについては全項目にわたり高い値を示すことより、得点力はもちろんのこと競技力全体において高いことが窺える。それに対して、CAN、BRAについては少なくとも、攻撃面では、得点面で平均以上あるいは、優れた値を示していることが窺える。

しかし、防御的項目については3チームとも目立たず、特にCAN、BRAのディフェンスについては積極的な値は示さず、中でもCANはBLKでBRAはSTLで非常に低い値を示している。これは、RBD/D、X（Recovery）やFoulなどを関連させて考慮すると、EGYの様な能力的に問題があるチームの立場とは根本的に異なっており、得点を稼いでのディフェンス面に負担をかけないという作戦が窺える。

(3) 第3因子は、この因子の全変動に対する寄与率は11.7％である。ここで、高い相関を示した因子はPTSに対して、逆相関とみられるSTL（図5－1）の2項目である。ここでは、オフェンスの得点力に対して、ディフェンスのSTLという項目が対称的に示されているが、逆の言い方をすると、得点力のあるチームはSTLへ出て行くことを強調されるということを意味している。つまり、得点によってディフェンスに関係する因子であろう。第2因子の得点力を代表しているという点では、同じ解釈であるが内容的にみると異なることが考えられる。この内容を整理するために、以上の解釈に対して、先の関係チェーンを当てはめ、サブカテゴリーを照らしあわせてみると、先ずCAFというチームはPTSが非常に低い値を示しており、TPG、FG共にシュート率の悪さが目立つ。RBD/Oなどでカバーしているように思えるが、最終的には得点力に還元されなかったようである。従って、オフェンス面のハンディをディフェンス力でカバーして行く戦略にならざるをえないという解釈に落ち着く。逆に、YUGはTPG/A、FG/Aは平均以下であり、限られた攻撃回数でシュート率を高くすることによって効率よく得点に生かしていることが窺える。全体的にみて、特に優れた値を誇っている訳でもなく、強いていればRBD/D、BLKなどが優れていることがうかがわれる。結果、STLは狙っていないようだ。つまり、オフェンスで無駄を作らずシュート率を上げる反面、ディフェンスではやや弱い外にないで、相手のインサイドでのプレイを阻止しシュート・ミスや、シュートブロックなどで失点をおさえ、常に防御面は内角で勝負することにポイントを置いていっているといえる。結論としては、この2チームはうまくビッグ・センターを生かし、得点効率を良くしてあえてディフェンスが積極的にならないともいいYUGと、逆に得点効率が悪くて、ディフェンスで積極的にボールをチャージしなければならないCBAの両極端なキャラクターを代表するものである。いわゆる、この因子は得点効率に対する防御スタイルの関係としてよい。ちなみに、YUGは参加チームの中でURSについて2番目の平均身長の高さを誇っている。

(4) 第4因子は、この因子の全変動に対する寄与率は10.9％である。ここで、高い相関を示した項目は、VLO（図6－1）と、逆相関を示したX（Recovery）の2項目が挙げられる。この因子は、単純なオフェンスに対するXという、いわゆるポールの支配力“Possession”を代表する
軸であるといえよう。先の関係チームを当てはめさせるスコア・データを読み取るとこの解釈における因子関係を、より詳細に説明することが可能です。例えば、ESPについては、最も優れた値を示したのがASTであり、平均より1.6シグマ以上のBRAに次ぐ抜群のパフォーマンスを発揮している。逆に劣っているのは、VIOとXである。ここで、ASTに関連する平均以上の項目を挙げると、FG/M、FT/M、PTS、RBD/Dの5項目であり、いわゆるRBD/Dから展開される遠攻パターンが描かれてくれる。つまり、やみくもに早い攻撃をすることよりミスを誘発し、無駄な攻撃パターンを自ら作ってしまっている自滅型のタイプのチームを代表しているといえるだろう。それに対し、URSは前述のYUGと同様に、特にシュート項目については、これといって優れた値は目立たないがX（Recovery）とVIOに平均より1シグマ以上の優れた値を示し、攻撃での安定性を発揮しているといえよう。さらにいえることは、平均以下の項目が少なく、全項目（攻撃・防衛）に渡ってバランスのとれた平均値を示していることが目立っており、今大会での無理なゲーム展開をのぞかせているといえよう。URSについては、先の報告でもSabonisというビッグ・センターの抜群のオフェンス・リバウンド力を生かし切ったTPG作戦がみごとに成功し、劇的な逆転優勝を飾ったことは今でも記憶に新しい。しかし、KORのように特にTPGを専門的に狙うチームではなく、状況に応じて使われているものであった。今回も同様に、TPGとFGとの使用頻度は殆ど差なく、非常に平均的（ZTPG/M：53.61、ZTPG/A：51.33、ZFG/M：0.36、ZFG/A：45.87）な得点バランスを示していることが指摘される。

まとめ

以上、今大会における代表的チームを検討するため、順を追ってチーム間の類似性および、各因子と項目間の相関パターンとの両方の角度から検討が進められて来た訳だが、最終的に次のように総括できる。

まずUSAのスタイルが挙げられるであろう。このチームは、従来より基本理論に基づいたオーソドックス・スタイルのオフェンス・パターンを持っている点が印象的である。今回も徹底したインサイド攻撃でFGを狙うと言うあくまでもオーソドックスな競技スタイルを誇示している。守りでもSTL、BLK、RBD/Dと終始コンスタントでスティディなディフェンスを行っているといえよう。一方、USAは対称的なカラーを持っているチームは、AUS、KOR、CHNであり、とりくに3ポイントシュートを専門に撃つ、アウトサイド攻撃型のチームといえよう。特にAUS、KORは表3、4でも明らかのように、極端にFGを嫌い徹底して、3ポイントシュートで得点を稼ごうと言った作戦があることがわかる。そこで前回の報告でもKORは相変わらずのTPG専門チームであったが、AUSについては、殆どTPGを試みないチームとして指摘されているにもかかわらず、今回はそのチーム・カラーから脱皮し、完璧にUSA型からKOR型へと転換している。このUSAとAUSのチーム・カラーを比較するために、各々のスコア項目の相関図を図7—1に示した。

その他に特色を示したチームは、CANとBRAのようにオフェンス重視のスタイルを取り、とにかく相手より多くの得点を稼こうというチームである。特にBRAに関しては、表3、4で見ると、シュート項目については全てにおいて
図7-1 サブスコア項目によるチーム間の相関図（AUS×USA）
図7-2 サブスコア項目によるチーム間の相関図（CAN×EGY）
図7-3 サブスコア項目によるチーム間の相関図（CAF×YUG）
図7-4 サブスコア項目間の相関図（ESP×URS）

て抜群の値を示していることより、TPGやFGに偏らず、バラエティな攻撃パターンが展開されていることがわかる。しかし、その優れた値とは正反対に、ディフェンスでは非常に消極的なことが窺える。つまり、純粋に攻撃回数を増やし、得点を稼いで勝とうとする攻撃中心型のチームを代表している。これらの点については、中村の評価でも指摘されている。これと対称的なチームは、今大会最高位のEGYがあげられる。そこでCANとEGYの比較を図7-2に示す。

次に同じ得点数のあるチームとして類似性を持っていますと思われたYUGについては、CAN、BRAに対して比較すると攻撃回数をいたずらに増やさず、長身選手を生かし、ディフェンスでは、RBD/D、BLKとゴール下でのプレイはできる限りボールを支配することに努め、相手ミスに対しては、忠実に対応、攻、オフェンスでも、無理をせず、セッター・プレイとTPGをうまくコントロールして、確率の高いシュート・セレクションを行っている。つまり、相手チームとの得点数を考慮した無駄のない、いわゆる、質の高い攻撃パターンを展開しているチームであろう。ちなみに、YUGのシュート率は、TPG：45.7％、FG：57.8％、FT：75.9％であった。これと逆のチームはCAFである。そこでYUGとCAFの比較を図7-3に示す。

最後に挙げられたチームは、URS、ESPによって説明された“Ball Possession”というカラーである。URSは、攻守共にボールを追い、ミスをカバーするというバランスが取れた“穴”のないチームといえる。逆に、ESPは自らボール
パスケットボールの競技力構造の分析

注
※1 Results Summary Games of the XXIVth Olympiad Seoul, Seoul Olympic Organizing Committee Basketball Competition Unit.
※2 Fédération Internationale Basketball de Amateur の略称。
※3 行列XのTPG/A 項目の値を意味する。
※4 1試合あたりの本数または回数(Times/Game)。
Xの単位。
※5 行列ZのTPG/A 項目の値を意味する。
※6 1試合あたりの得点数(Points/Game)。
Xの単位。

参考・引用文献
1) Auerbach, A. Basketball--for the player, the fan & the coach. 75-78. New York: Simon And Schuster, 1975.
12) Mikes, J. Basketball Fundamentals. 177-180.

付記

サブスコア記録の入手に際しては、日本バスケットボール協会の安達宣宣氏にご協力を頂きました。計算処理に関しては、本学の鈴木敏明助教授の助言を頂きました。また、資料整理にあたっては、本学バスケットボール部内の今井望、亀田祐美子両君の協力を頂きました。ここに記して深く感謝の意を表します。
Analysis of Structural Properties of Basketball Performance

Yoshihiro KODAMA

The purpose of this study is to investigate the structure of game of basketball played in international competition. Data for this study was obtained from official statistics of 1988 Seoul Olympic Men’s Basketball games.

Using the olympic statistics, the study attempted to analyze the important factors common among all of the participated teams. By using “Factor Analysis Method” four factors became evident. They were (1) Fundamental offensive, (2) Three point field goal offensive, (3) Field goal offensive, and (4) Defensive aggressiveness factors.

After further analysis of the above result, all of the teams fell into four major styles, by comparing two completely opposite methods of play.

For example, to determine the offensive style, teams with inside oriented offensive style were compared with outside oriented offensive teams. The four major playing styles were (1) Offensive type (FG or TPG), (2) High scoring type, (3) Control offensive type, and (4) Ball possession ability type.